The Synthesis of Indan-1-ones and Isocoumarins

By Rachel H. Carter, Mary J. Garson, Robert A. Hill, James Staunton,* and David C. Sunter, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW

A flexible synthetic route leading via indan-1-ones to variously methylated and oxygenated isocoumarins is described. The indanones are prepared by alternative routes involving intramolecular Friedel-Crafts cyclisation of arylpropionic acids or pericyclic ring closure of acrylophenones. The influence of substitution on the rate of the pericyclic reaction is assessed.

The isocoumarin moiety (1) forms the basis of an important class of secondary metabolites being isolated as end-products or intermediates of many biosynthetic pathways. ${ }^{1}$ Thus, for example, the fungal metabolites sclerin (2), ${ }^{2}$ canescin (3), ${ }^{3}$ sepedonin (4), ${ }^{4}$ and ascochitine (5) are considered to derive from various derivatives of

(5)

3-alkyl-6,8-dihydroxyisocoumarins. In order to test some of these hypotheses we needed to synthesise the 3 methylisocoumarins together with a set of derivatives containing one or more additional methyl groups situated at $C(4), C(5)$, and $C(7)$.

RESULTS AND DISCUSSION

Our synthetic approach (Scheme l) hinges on the oxidative cleavage of an indanone, which can be effected by the ozonolysis of an enol derivative of the ketone. It
is important for the present studies that the synthesis of possible biosynthetic precursors must allow a high specific incorporation of an isotopic label at a selected site of the molecule; an important feature of our strategy is its flexibility which stems from the existence of alternative methods of indanone preparation, designated (a) and (b). By investigating the preparation of a range of indanones we have shown that these two methods are complementary. We have further synthesised two additional isocoumarins, (36) and (37).

The parent indanone (12) was prepared earlier by route $(a) .{ }^{5}$ This route also proved convenient for the preparation of the C-methyl analogues (10), (11), and (13). For the preparation of the more substituted indanones, however, route (b) proved more attractive, mainly because of the relative accessibility of the required aromatic starting materials: 1,3 -dihydroxybenzene (resorcinol) and its 2-methyl, 4-methyl, and 2,4dimethyl derivatives. The desired range of acyl substituents was readily introduced by standard methods, though once again it was necessary to employ alternative strategies depending on the substitution pattern. Thus the acrylophenones (18)-(20) and (21)-(24) were prepared using Friedel-Craft conditions with acetyl or propionyl chloride, followed by introduction of the 2,3ene substituent by the Mannich reaction; whereas the more substituted compounds (25)-(27) and (28)-(31) were conveniently prepared directly by acylation with crotonyl or tiglyl chloride.

Both Lewis and protic acids were investigated as catalysts for the cylisation of the enones. Generally the reactions were slower with a protic acid, but the products were purer and a higher yield was obtained. The ease of cyclisation and the efficiency of the reaction is critically dependent on the substitution pattern. Thus in the absence of a methyl substituent at $C(2)$ of an acrylophenone, no appreciable cyclisation could be achieved without using conditions sufficiently extreme to decompose the product. In addition there needs to be at least one methyl substituent in the aryl ring, although (28) did cyclise in high yield over a period of several days.

The effect of the alkyl substituents can be rationalised in terms of their ability to stabilise the intermediate carbonium ion produced by cyclisation (Scheme 2). A methyl group placed ortho to the site of attack has less accelerating effect than one placed para, presumably
because it causes a greater degree of steric hindrance. Even so, each additional methyl group in the ring has a net accelerating effect and the highest rate of cyclisation was achieved with the most substituted enone (30),
the success of the cyclisation. Both the parent enone (41) ${ }^{6}$ and the o-monomethoxy-derivative (42) (Scheme 3) cyclise satisfactorily in the presence of concentrated sulphuric acid as catalyst. The presence of the 2 -

(a)

(6) $R^{1}=R^{2}=R^{3}=R^{4}=H$
(7) $R^{\prime}=M e ; R^{2}=R^{3}=R^{4}=H$
(8) $R^{1}=R^{2}=R^{3}=H ; R^{4}=M e$
(9) $R^{1}=R^{2}=M e ; R^{3}=R^{4}=H$

(18) $R^{1}=R^{2}=R^{3}=R^{4}=H$
(19) $R^{1}=M e: R^{2}=R^{3}=R^{4}=H$
(20) $R^{\prime}=R^{2}=M e_{i} R^{3}=R^{4}=H$
(21) $R^{1}=R^{2}=R^{3}=H: R^{4}=M e$
(22) $R^{1}=R^{4}=M e ; R^{2}=R^{3}=H$
(23) $R^{1}=R^{2}=R^{4}=M e ; R^{3}=H$
(24) $R^{1}=R^{3}=H ; \quad R^{2}=R^{4}=M e$
(25) $R^{\prime}=R^{2}=R^{4}=H ; R^{3}=M e$
(26) $R^{2}=R^{4}=H ; R^{\prime}=R^{3}=M e$
(27) $R^{1}=R^{2}=R^{3}=M e ; R^{4}=H$
(28) $R^{\prime}=R^{2}=H ; \quad R^{3}=R^{4}=M e$
(29) $R^{2}=H ; R^{1}=R^{3}=R^{4}=M e$
(30) $R^{1}=R^{2}=R^{3}=R^{4}=M e$
(31) $R^{1}=H ; R^{2}=R^{3}=R^{4}=M e$
plementary: the less substituted compounds are conveniently prepared from readily available starting materials according to route (a), whereas the more heavily substituted derivatives are best prepared by route (b). Two of the indanones described above, (13)


```
(39) }\mp@subsup{R}{}{1}=\mp@subsup{R}{}{2}=
(40) R'=OMe; R
(41) }\mp@subsup{R}{}{1}=H;\mp@subsup{R}{}{2}=M
(42) }\mp@subsup{R}{}{1}=OMe; R2=M
```

Scheme 3
and (17), have been converted into the corresponding isocoumarins (33) and (34) by ozonolysis of the enol trifluoroacetate derivatives. The extra crowding resulting from the higher degree of substitution presented no insurmountable problems in these transformations, though the reactions leading to the more heavily substituted derivative (34) tended on occasion to produce a significant quantity of the hydrate (38) in addition. The lactol was readily converted into the isocoumarin by distillation. Both isocoumarins are smoothly demethylated by treatment with boron tribromide to produce high yields of the dihydroxy-compounds (36) and (37).

The routes described are ideally suited for the introduction of specific isotopic labels at key sites from readily available labelled building blocks such as malonate or methyl iodide. The way is now open, therefore, for the preparation of the wide range of variously substituted 6,8 -dihydroxyisocoumarins required for biosynthetic studies.

EXPERIMENTAL

M.p.s were determined with a Kofler hot-stage apparatus. I.r. spectra were recorded with a Perkin-Elmer 257 spectrophotometer for solutions in chloroform, unless otherwise stated. ${ }^{1} \mathrm{H}$ N.m.r. were recorded with a Varian HAl00 or Perkin-Elmer RB12 spectrometer for solutions in deuteriochloroform, unless otherwise stated $\left(\mathrm{SiMe}_{4}\right.$ as internal standard).

3-(3.5-Dimethoxyphenyl)propionic Acid (6).-3,5-Dimethoxybenzaldehyde (0.92 g), malonic acid (1.1 g), and piperidine (0.5 ml) were dissolved in dry pyridine (24 ml) and the mixture heated with stirring for 5 h at $110^{\circ} \mathrm{C}$. On cooling, the solution was poured onto crushed ice (60 g) and hydrochloric acid (35 ml) and the solid which precipitated was removed by filtration and dried. Recrystallisation from 95% ethanol gave 3-(3,5-dimethoxyphenyl)propenoic acid ($1.12 \mathrm{~g}, 94 \%$) as white needles, m.p. $174-176{ }^{\circ} \mathrm{C}$ (「ound: C, $63.4 ; \mathrm{H}, 5.75 . \quad \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 63.5 ; \mathrm{H}$, $5.77 \%)$; $\lambda_{\text {max }} 228,270(\mathrm{sl})$, and 284 nm ; $v_{\text {max }} 1690 \mathrm{~s}$ and $1640 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta 3.82(6 \mathrm{H}, \mathrm{S}, \mathrm{OMe}), 6.42(1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 16 \mathrm{~Hz}$, $-\mathrm{CH}=), 6.50(1 \mathrm{H}, \mathrm{t}, J 3 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.69(2 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}$, Ar-H), and $7.72(1 \mathrm{H} . \mathrm{AB} \mathrm{d}, J 16 \mathrm{~Hz},-\mathrm{CH}=) ; m / e 208\left(M^{+}\right)$. 3-(3,5-Dimethoxyphenyl)propenoic acid (0.5 g) was dis-
solved in absolute ethanol (25 ml) and 5% palladiumcharcoal $(0.05 \mathrm{~g})$ added. The mixture was hydrogenated at $20{ }^{\circ} \mathrm{C}$ and atmospheric pressure until hydrogen uptake ceased (4 h). After filtration through Hyflosupercel, the solution was evaporated in vacuo to give an oily residue which crystallised on standing. Recrystallisation from cyclohexane gave 3-(3,5-dimethoxyphenyl)propionic acid (6) as white crystals ($0.48 \mathrm{~g}, 96 \%$), m.p. $59-61{ }^{\circ} \mathrm{C}$ (lit., ${ }^{7}$ $58-60{ }^{\circ} \mathrm{C}$); $\lambda_{\text {max. }} 223,275$, and $283(\mathrm{sh}) \mathrm{nm}$; $\nu_{\text {max. }} 1730 \mathrm{~s}$ $\mathrm{cm}^{-1} ; \delta 2.82\left(4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{M}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.79(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.38(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$, and $11.34\left(1 \mathrm{H}, \mathrm{br} s, \mathrm{CO}_{2} \mathrm{H}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; m / e 210\left(M^{+}\right)$.

3-(3,5-Dimethoxy-4-methylphenyl)-2-methylpropionic Acid (9).-3,5-Dimethoxy-4-methylbenzaldehyde ${ }^{8} \quad(2.4 \mathrm{~g})$ was dissolved in dry benzene (30 ml); diethyl malonate (2.1 ml , 2.0 g), piperidine ($0.05 \mathrm{ml}, 0.043 \mathrm{~g}$), and glacial acetic acid $(0.15 \mathrm{ml})$ were added. The mixture was refluxed in a DeanStark apparatus for $15 \mathrm{~h}(0.2 \mathrm{ml}$ water collected, theoretical amount 0.23 ml) ; after cooling, ether (20 ml) was added and the solution washed with 3 N sulphuric acid (20 ml), 10% sodium hydrogencarbonate solution (20 ml), 5% acetic acid $(20 \mathrm{ml})$, and water $(20 \mathrm{ml})$ twice, then dried and evaporated to give an oil which was distilled at $160^{\circ} \mathrm{C} / 0.1$ Torr to give diethyl 3,5-dimethoxy-4-methylbenzylidenemalonate $(4.0 \mathrm{~g}$, 93%) as colourless prisms from hexane, m.p. $83-85{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.3 ; \mathrm{H}, 6.8 . \quad \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $\mathrm{C}, 63.34 ; \mathrm{H}$, $6.88 \%)$; $\lambda_{\text {max. }} 225$ and 311 nm ; $\nu_{\text {max }} 2960(\mathrm{br}), 1710 \mathrm{~s}, 1620$, 1580 , and $1450^{-1} ; \delta 1.30\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} M e\right), 1.32$ $\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-M e), 3.76(6 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.28\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{Me}\right), 4.32(2 \mathrm{H}, \mathrm{q}, J$ $\left.7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 6.64(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$, and $7.66(1 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{CH}=)$; $m / e 322\left(M^{+}\right)$.

Diethyl 3,5-dimethoxy-4-methylbenzylidenemalonate $(0.38 \mathrm{~g})$ was dissolved in dry ethyl acetate (20 ml); 5% palladium-charcoal (0.2 g) was added and the mixture hydrogenated at $20{ }^{\circ} \mathrm{C}$ and atmospheric pressure for 2 h . After filtration through Hyflosupercel, the solution was evaporated and the resulting oil distilled at $150^{\circ} \mathrm{C} / 0.05$ Torr to give diethyl (3,5-dimethoxy-4-methylbenzyl)malonate (0.36 $\mathrm{g}, 95 \%$) as colourless needles from hexane, m.p. $78-79{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.15 ; \mathrm{H}, 7.7 . \quad \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{8}$ requires $\mathrm{C}, 62.95 ; \mathrm{H}$, 7.46%); $\lambda_{\text {nax. }} 225(\mathrm{sh}), 271$, and 280 nm ; $v_{\text {max. }} 2940,1730 \mathrm{~s}$, 1590,1450 , and $1140 \mathrm{~cm}^{-1}$; $\delta 1.20\left(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CO}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 3.18\left(2 \mathrm{H}, J 7 \mathrm{~Hz}, \mathrm{Ar}^{-} \mathrm{CH}_{2}-\right)$, $3.66\left(1 \mathrm{H}, J 7 \mathrm{~Hz}, \mathrm{Ar}^{-} \mathrm{CH}_{2}-\mathrm{CH}-\right), 3.74(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.16$ $\left(4 \mathrm{H}, q, J 7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CHMe}\right)$, and $6.36(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; m / e$ 324 (M^{+}).
Diethyl-(3,5-dimethoxy-4-methylbenzyl)malonate (0.37 g) in dry ethanol (2 ml) was added to a solution of sodium $(0.07 \mathrm{~g})$ in dry ethanol $(12 \mathrm{ml})$. The mixture was refluxed for 1 h , then methyl iodide (0.195 g) in ethanol (2 ml) was added slowly and heating continued for 1 h . After cooling the solution was concentrated; ether was added, the solution washed with water, 3 N sulphuric acid, and 10% sodium hydroxide, then dried and evaporated, giving diethyl (3,5dimethoxybenzyl)methylmalonate ($0.35 \mathrm{~g}, 95 \%$) as a yellow oil which was not further purified; $\lambda_{\text {max. }} 224,272$, and 280 nm ; $v_{\text {max }} 2980,1730$, and $1610 \mathrm{~cm}^{-1} ; \delta 1.26(6 \mathrm{H} . \mathrm{t}$, $\left.J 7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me})$, $3.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}^{-}-\mathrm{CH}_{2}-\right), 3.68(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.16(4 \mathrm{H}, \mathrm{q}$, $J 7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), and $6.28(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; m / e 338$ $\left(M^{+}\right)$.

Diethyl (3,5-dimethoxybenzyl)methylmalonate (1.9 g) was added to a solution of potassium hydroxide (0.6 g) in water (6 ml) and the mixture refluxed for 30 h . After
cooling, sulphuric acid (1.2 g) in water (1.8 ml) was added and heating continued for 25 h . The product was extracted with ether $(2 \times 10 \mathrm{ml})$, and the ethereal solution was washed with 10% sodium hydrogencarbonate $(2 \times 5 \mathrm{ml})$. The acidified aqueous solution was extracted with ether $(2 \times 10 \mathrm{ml})$ and the combined ether extracts dried and evaporated to give a yellow oil, which crystallised on standing. Recrystallisation from cyclohexane or ether gave 3-(3,5-dimethoxyphenyl)-2-methylpropionic acid (9) ($1.1 \mathrm{~g}, 82 \%$) as colourless crystals, m.p. $118-120{ }^{\circ} \mathrm{C}$ (Found: C, 65.7; $\mathrm{H}, 7.5 . \quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.53 ; \mathrm{H}$, 7.61%) ; $\lambda_{\text {max. }} 213,225$, and 272 nm ; $v_{\text {max. }} 3300-2800 \mathrm{w}(\mathrm{br})$, 2940 , and $1710 \mathrm{~cm}^{-1}$; $\delta 1.20(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, \mathrm{Me}), 2.04(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Ar}-\mathrm{Me})$, $2.5-3.1\left(3 \mathrm{H}\right.$, complex m, $\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}$), 3.76 $(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $10.5\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{H}\right) ; m / e 238\left(M^{+}\right)$.

3-(3,5-Dimethoxy-4-methylphenyl)propionic Acid (7).Following the procedure described above for the preparation of (6), 3,5-dimethoxy-4-methylbenzaldehyde (5.5 g) was converted into 3-(3,5-dimethoxy-4-methylphenyl)propenoic acid ($5.9 \mathrm{~g}, 96 \%$). Recrystallisation from 95% ethanol gave white needles, m.p. $165-166{ }^{\circ} \mathrm{C}$ (Found: C, 64.8; H, 6.4 . $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C, 64.9; H, 6.31\%); $\lambda_{\text {max. }} 231$ and 304 nm ; $v_{\text {max. }} 2940,1690$, and $1635 \mathrm{~cm}^{-1} ; \delta 2.12(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{Me}), 3.84$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.39 ($1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 15 \mathrm{~Hz}$, $-\mathrm{CH}=), 6.70(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 15 \mathrm{~Hz}$, $-\mathrm{CH}=)$, and $9.34\left(1 \mathrm{H}\right.$, br s, $\mathrm{CO}_{2} \mathrm{H}$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right)$; $m / e 222\left(M^{\dagger}\right)$.

3-(3,5-Dimethoxy-4-methylphenyl)propenoic acid (0.2 g) was hydrogenated to give 3 -(3,5-dimethoxy-4-methylphenyl)propionic acid (7) ($0.19 \mathrm{~g}, 98 \%$), m.p. $102-104{ }^{\circ} \mathrm{C}$ (from cyclohexane) (Found: $\mathrm{C}, 64.35$; $\mathrm{H}, 7.15 . \quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.32 ; \mathrm{H}, 7.14 \%)$; $\lambda_{\text {max. }} 219,271$, and $280(\mathrm{sh})$ nm ; $v_{\text {maxx }} 1725 \mathrm{~cm}^{-1} ; \delta 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 2.81(4 \mathrm{H}$, $\left.\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{M},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 3.79(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.38(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$, and $10.93\left(1 \mathrm{H}\right.$, br $\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; m / e$ $224\left(M^{+}\right)$.

1-(2,4-Dimethoxyphenyl)prop-2-en-1-one (18).-2,4-Dimethoxyacetophenone (10 g), paraformaldehyde (2.1 g), dimethylamine hydrochloride (6 g), and three drops of concentrated hydrochloric acid were refluxed in ethanol for 8 h . Ether (100 ml) was added and the solution left at $0^{\circ} \mathrm{C}$ for the Mannich salt to crystallise. The ether supernatant was decanted and the residual tacky salt dissolved in dilute hydrochloric acid (15 ml) and washed with ether $(2 \times 15 \mathrm{ml})$. Dilute ammonia was added to release the free amine, which was then extracted into ether (3×25 $\mathrm{ml})$, dried, and evaporated to give 3 -(NN-dimethylamino)-1-(2,4-dimethoxyphenyl)propan-1-one as an orange-brown oil which could be distilled at $125-127^{\circ} \mathrm{C} / 0.5$ Torr (Found: $M^{+}, 237.1643$. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} N$ requires $M, 237.1647$); $\lambda_{\text {naxa }}$ 229,268 , and 308 nm ; $v_{\text {max. }} 2820,2780$, and $1685 \mathrm{~s} \mathrm{~cm}^{-1}$; d $2.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.65$ and 3.10 (each $2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, distorted), 3.75 and 3.82 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.45 ($1 \mathrm{H}, \mathrm{d}$, $\left.\int 3 \mathrm{~Hz}\right), 6.55(1 \mathrm{H}, \mathrm{q}, J 11,3 \mathrm{~Hz})$, and $7.72(1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz})$; $m / e 237,192$, and 165 . This amine (5.67 g) was dissolved in ether (30 ml) and methyl iodide (4.6 g) added slowly. After standing overnight at $0{ }^{\circ} \mathrm{C}$, the methiodide salt $(7.2 \mathrm{~g})$ was removed by filtration and dried. The methiodide salt (400 mg) was distilled at $170{ }^{\circ} \mathrm{C} / 0.2$ Torr to give a yellow oil ($180 \mathrm{mg}, \mathbf{9 0} \%$) which could be further purified by p.l.c. using ether as eluant to give 1-(2,4-dimethoxy-phenyl)prop-2-en-1-one (18) (Found: C, 68.05; H, 6.65. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 68.64 ; \mathrm{H}, 6.25 \%$); $\lambda_{\text {max. }} 231,283$, and 316 nm ; $\nu_{\text {max }} 3040,2840$, and $1660 \mathrm{~cm}^{-1} ; \delta 3.82$, and 3.85 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.65\left(1 \mathrm{H}, \mathrm{q}, J 9,2 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CHCO}\right)$,
$6.25\left(1 \mathrm{H}, \mathrm{q}, J 18,2.5 \mathrm{~Hz}, \mathrm{CH}_{2} c \imath s\right.$ to CO$), 6.45(1 \mathrm{H}, \mathrm{q}$, $J 9,2.5 \mathrm{~Hz}, 5-\mathrm{H}), 6.45(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.2(1 \mathrm{H}, \mathrm{q}, J 18,9$ $\mathrm{Hz}, \mathrm{CH}_{2}$ trans to CO), and $7.65(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}) ; m / e 192$, 165, and 112.

1-(2,4-Dimethoxy-3-methylphenyl)-2-methylprop-2-en-1-one (22).-1,3-Dihydroxy-2-methylbenzene (5.0 g) was added slowly with stirring to boron trifluoride-diethyl ether $(10 \mathrm{ml})$ (freshly distilled from calcium hydride) and the solution cooled to $0{ }^{\circ} \mathrm{C}$. Propionic anhydride (5.85 g) was added dropwise during 20 min and the solution allowed to warm to $20^{\circ} \mathrm{C}$, then heated at $75{ }^{\circ} \mathrm{C}$ for 6 h . On cooling, the coagulum was poured, with vigorous stirring, into icewater (100 ml), left overnight at $4^{\circ} \mathrm{C}$, and the resulting yellow precipitate filtered off. Recrystallisation from a large volume of boiling water gave 2,4-dihydroxy-3-methylpropiophenone as colourless crystals ($6.1 \mathrm{~g}, 84 \%$), m.p. 124-125 ${ }^{\circ} \mathrm{C}$ (Found: C, 66.55; H, 6.65. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 66.66 ; \mathrm{H}, 6.66 \%)$; $\lambda_{\text {max. }} 227$ and 270 nm ; $\nu_{\text {max. }}$ $1660 \mathrm{~cm}^{-1}$; $\delta 1.15\left(3 \mathrm{H}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 2.20(3 \mathrm{H}, \mathrm{s}$, $\operatorname{Ar}-\mathrm{Me}), 2.96\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 6.24(1 \mathrm{H}, \mathrm{AB} \mathrm{d}$, $J 16 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, and $7.37(1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 10 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; m / e$ $180\left(M^{+}\right)$.
2,4-Dihydroxy-3-methylpropiophenone (5.0 g) was dissolved in dry acetone (500 mll), and potassium carbonate $(30 \mathrm{~g})$ and dimethyl sulphate (30 ml) were added with stirring; the solution was stirred under reflux for 48 h . After cooling and filtration, the solvent was evaporated in vacuo. The residue was stirred with concentrated ammonia (100 ml) for 1 h and then dissolved in water (250 ml) and ether (250 ml). The ethereal layer was separated and washed with water ($4 \times 250 \mathrm{ml}$), then dried and evaporated giving pale orange crystals of 2,4 -dimethoxy-3-methylpropiophenone, which were recrystallised from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) to give colourless prisms ($4.8 \mathrm{~g}, 86 \%$), m.p. $40-41{ }^{\circ} \mathrm{C}$ (Found: C, 69.35; H, 7.8. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.23 ; \mathrm{H}, 7.69 \%$); $\lambda_{\text {max. }} 227$ and 273 nm ; $\nu_{\text {max }}$ $1660 \mathrm{~cm}^{-1} ; \delta 1.18\left(3 \mathrm{H}, \mathrm{t}, J 10 \mathrm{~Hz}, \mathrm{CH}_{2} M e\right), 2.16(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{Me}), 2.95\left(2 \mathrm{H}, \mathrm{q}, J 10 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.67(1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, and 7.53 $(1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; m / e 208\left(M^{+}\right), 193$, and 179. 1-(2,4-Dimethoxy-3-methylphenyl)-2-methylprop-2-en-1-
one (22) was prepared from 2,4-dimethoxy-3-methylpropiophenone by two methods.
Method a. 2,4-Dimethoxy-3-methylpropiophenone (3.41 g), dimethylamine hydrochloride (1.75 g), paraformaldehyde $(1.05 \mathrm{~g})$, and concentrated hydrochloric acid (0.5 ml) were dissolved in absolute ethanol (25 ml) and the mixture heated refluxed. After 18 h more paraformaldehyde (0.3 g) was added and the reaction continued for a further 24 h . On cooling, the mixture was poured into an excess of ether $(200 \mathrm{ml})$ and left overnight at $0^{\circ} \mathrm{C}$ for the Mannich salt to crystallise. The supernatant was decanted off and the salt dissolved in hydrochloric acid (25 ml) and washed with ether ($2 \times 25 \mathrm{ml}$). Saturated sodium hydrogencarbonate solution (25 ml) was added carefully to the acidic solution, which was then extracted with ether $(4 \times 50 \mathrm{ml})$; the ethereal layers were dried and evaporated to give an orange oil, which was purified by distillation at $150{ }^{\circ} \mathrm{C} / 0.5 \mathrm{Torr}$ giving $\quad 3$-(NN-dimethylamino)-1-(2,4-dimethoxy-3-methyl-methylphenyl)-2-methylpropan-1-one as a pale yellow oil ($2.8 \mathrm{~g}, 67 \%$) (Found: C, 67.9 ; H, 8.6; N, 5.25. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\mathrm{C}, 67.92 ; \mathrm{H}, 8.67 ; \mathrm{N}, 5.28 \%$) ; $\lambda_{\text {max. }} 227$ and 273 nm ; $\nu_{\text {max }} 1665 \mathrm{~cm}^{-1}$; $\delta 1.16(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{Me}), 2.16(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 2.22\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 3.48\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$, $3.1-3.6$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{COCHMe}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.87 ($3 \mathrm{H}, \mathrm{s}$,

OMe), $6.65(1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, and 7.44 ($1 \mathrm{H}, \mathrm{AB} \mathrm{d}$, $\left.\int 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\right) ; m / e 265\left(M^{+}\right)$. The methiodide salt of this amine was made by dissolving the amine (2.43 g) in ether $(100 \mathrm{ml})$ with an excess of methyl iodide $(25 \mathrm{ml})$. The solution was left overnight at $0^{\circ} \mathrm{C}$; the white precipitate 3.79 g) was filtered off and dried, m.p. $184-185^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 46.95 ; \mathrm{H}, 6.4 ; \mathrm{N}, 3.2$. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{INO}_{3}$ requires $\mathrm{C}, 47.19$: H , $6.39 ; \mathrm{N}, 3.44 \%$). When heated in vacuo to $170{ }^{\circ} \mathrm{C}$, the methiodide salt yielded a yellow oil of 1-(2,4-dimethoxy-3-methylphenyl)-2-methylprop-2-en-1-one (22), b.p. $130^{\circ} \mathrm{C} / 0.1$ Torr (Found: $\mathrm{C}, 70.95 ; \mathrm{H}, 7.3 . \quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C , $70.91 ; \mathrm{H}, 7.27 \%$) ; $\lambda_{\max } 223$ and $281 \mathrm{~nm} ; \nu_{\max } 1650 \mathrm{~cm}^{-1}$; $\delta 2.03(3 \mathrm{H}, \mathrm{d}, J \mathrm{lHz}, \mathrm{Me}), 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 3.68(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.58(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cis to Me$), 5.83$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ trans to Me), $6.60(1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, and $7.13(1 \mathrm{H}, \mathrm{AB} \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; m / e 220\left(M^{+}\right)$

Method b. 2,4-Dimethoxy-3-methylpropiophenone (1.0 g), piperidine hydrochloride (0.6 g), paraformaldehyde $(0.025 \mathrm{~g})$, and concentrated hydrochloric acid (0.2 ml) were refluxed in dry ethanol; after 1 h more paraformaldehyde $(0.225 \mathrm{~g})$ was added and the solution refluxed overnight. On cooling. the mixture was poured into ether (100 ml) and left for 24 h at $0^{\circ} \mathrm{C}$. The supernatant was decanted off leaving the Mannich salt, which was dissolved in saturated sodium hydrogencarbonate solution (50 ml) then extracted with ether $(4 \times 50 \mathrm{ml})$. The ethereal solution was dried and evaporated giving 3-piperidino-2-methyl-1-(2,4-di-methoxy-3-methylphenyl)propan-1-one as a yellow-orange oil, which gave a pale yellow oil (61%) on distillation at $160{ }^{\circ} \mathrm{C} / 0.5$ Torr (Found: C, 71.15 ; H, 8.8; N, 4.6. $\mathrm{C}_{17}{ }^{-}$ $\mathrm{H}_{27} \mathrm{NO}_{3}$ requires $\left.\mathrm{C}, 70.80 ; \mathrm{H}, 8.85 ; \mathrm{N}, 4.60 \%\right)$; $\lambda_{\text {max. }} 225$ and 273 nm ; $\nu_{\text {nax. }} 1680 \mathrm{~cm}^{-1} ; \delta 1.18(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{Me})$, $1.60-2.10\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me})$, $2.90-3.30\left(5 \mathrm{H}, \mathrm{m}, \mathrm{COCHMe}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}\right), 3.74(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}) .3 .88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.60(1 \mathrm{H}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, and $7.40(1 \mathrm{H}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; m / e 305\left(M^{+}\right)$. The piperidinohydrochloride salt. (3.1 g) was dissolved in water $(250 \mathrm{ml})$ and steam distilled; 21 of distillate were collected and extracted with ether $(3 \times 1 \mathrm{l})$. The etheral solution was dried and evaporated giving (22) as a colourless oil (1.92 g, 88%).

1-(2,4-Dimethoxyphenyl)but-2-en-1-one (25).--1,3-Dimethoxybenzene (175 mg) was stirred at reflux with tin(iv) chloride $(0.5 \mathrm{ml})$ and crotonyl chloride $(0.2 \mathrm{ml})$ in AnalaR carbon disulphide (10 ml). After 2 h , the solvent was removed and the residue decomposed with ice-concentrated hydrochloric acid. After extraction into ether ($3 \times 5 \mathrm{ml}$), the combined organic layers were dried and evaporated to give 1-(2,4-dimethoxyphenyl)but-2-en-1-one (25) as a red oil, which was further purified by column chromatography on silica using dichloromethane as eluant to give a yellow oil ($200 \mathrm{mg}, 80 \%$), b.p. $125^{\circ} \mathrm{C} / 0.3$ Torr (Found: $M^{+}, 206.0937$. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 206.0942$); $\lambda_{\text {nax. }} 232,272$, and 315 $\mathrm{nm} ; \nu_{\max } 2830,1655$, and $1130 \mathrm{~cm}^{-1} ; \delta 1.95(3 \mathrm{H}, \mathrm{d}, J$ $7 \mathrm{~Hz}, \mathrm{Me}), 3.82$ and 3.85 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.80(1 \mathrm{H}, \mathrm{s}$, $\mathrm{COCH})^{-}$), 6.85 ($\left.1 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz} . \mathrm{MeCH}\right), 6.48\left(1 \mathrm{H}, \mathrm{br}, \mathrm{H}-3^{\prime}\right)$, $6.58(1 \mathrm{H}, \mathrm{q}, J 10,2 \mathrm{~Hz}, \mathrm{H}-5$), and $7.70(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}$, $\left.\mathrm{H} \cdot 6^{\prime}\right) ; m / e 206\left(M^{+}\right), 190,188,166$, and 150.

1-(2,4-Dimethoxyphenyl)-2-methylbut-2-en-1-one (28).--1,3Dimethoxybenzene $(0.63 \mathrm{~g})$ was dissolved in AnalaR carbon disulphide (30 ml) and stirred at reflux for 2 h with tin(cv) chloride (2 ml) and tiglyl chloride (0.65 g) until a red-brown layer had separated. The solvent was then removed and the viscous residue decomposed with iceconcentrated hydrochloric acid and extracted into ether
($3 \times 20 \mathrm{ml}$). The organic layers were dried and evaporated to give an oil $(1.0 \mathrm{~g})$ which was further purified by column chromatography on silica using dichloromethane as eluant to give 1-(2,4-dimethoxyphenyl)-2-methylbut-2-en-1one (28) as a pale oil ($0.8 \mathrm{~g}, 75 \%$), b.p. $125{ }^{\circ} \mathrm{C} / 0.4$ Torr (Found: $\mathrm{C}, 71.4 ; \mathrm{H}, 7.55 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.90$; $\mathrm{H}, 7.27 \%$) ; $\lambda_{\max } 272(\mathrm{sh}), 280$, and $298 \mathrm{~nm} ; \nu_{\max } 2950$, $2830,1630,1600,1570$, and $1140 \mathrm{~cm}^{-1} ; \delta 1.75(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}, \mathrm{COC}=\mathrm{CH} M e), 1.85(3 \mathrm{H}, \mathrm{s}, \mathrm{COCMe}), 3.61$ and 3.78 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right.$ and MeCH$), 6.44(1 \mathrm{H}$, $\mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{H}-5)$, and $7.13\left(1 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{H}^{\prime}{ }^{\prime}\right) ; m / e 220$ $\left(M^{+}\right), 206,165$, and 122 .

1-(2,4-Dimethoxy-3-methylphenyl)prop-2-en-1-one (19).-Treatment of 2,4-dihydroxy-3-methylbenzene (5.0 g) in acetic anhydride and boron trifluoride-ether as described for (22) gave 2,4-dihydroxy-3-methylacetophenone (83\%) as white needles from water, m.p. $165-166^{\circ} \mathrm{C}$ (lit., ${ }^{9} 156-$ $157{ }^{\circ} \mathrm{C}$) ; $\lambda_{\text {max. }} 233,288$, and $317(\mathrm{sh}) \mathrm{nm}$; $\nu_{\text {nax. }} 1655 \mathrm{~cm}^{-1}$; $\delta 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 6.26(1 \mathrm{H}, J$ $16 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, and $7.39(1 \mathrm{H}, J 10 \mathrm{~Hz}$, Ar-H); m/e 166 $\left(M^{+}\right)$. By treatment of this compound with dimethyl sulphate and potassium carbonate, 2,4-dimethoxy-3-methylacetophenone was prepared in 82% yield as a colourless solid on distillation at $90{ }^{\circ} \mathrm{C} / 0.1$ Torr, m.p. $30-31{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 68.0 ; \mathrm{H}, 7.2 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 68.04 ; \mathrm{H}$, $7.22 \%)$; $\lambda_{\max } 234$ and 285 nm ; $\nu_{\max } 1670 \mathrm{~cm}^{-1} ; \delta 2.03(3 \mathrm{H}$, $\mathrm{s}, \mathrm{COMe}), 2.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.82(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 6.38(1 \mathrm{H}, J 7 \mathrm{~Hz}$, Ar-H), and $7.53(1 \mathrm{H}, J 7 \mathrm{~Hz}$, Ar-H) ; m/e $194\left(M^{+}\right)$.

1-(2,4-Dinethoxy-3-methylphenyl) prop-2-en-1-one (19) was prepared from 2,4-dimethoxy-3-methylacetophenone by two methods.

Method a. Treatment with paraformaldehyde-dimethylamine hydrochloride gave 3 -dimethylamino-1-(2,4-di-methoxy-3-methylphenyl)propan-1-one (71%) as a yellow oil, b.p. $140{ }^{\circ} \mathrm{C} / 0.3$ Torr (Found: $\mathrm{C}, 66.95 ; \mathrm{H}, 8.35 ; \mathrm{N}, 5.5$. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 66.93 ; \mathrm{H}, 8.36 ; \mathrm{N}, 5.57 \%$) ; $\lambda_{\text {max. }} 230$ and $273 \mathrm{~nm} ; \nu_{\max .} 1665 \mathrm{~cm}^{-1} ; \delta 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 2.25$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.50-3.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.69(1 \mathrm{H}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, and 7.60 ($1 \mathrm{H}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; m / e 251\left(M^{+}\right)$. The methiodide salt of this amine melts at $178-181^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 45.75$; H , $6.1 ; \mathrm{N}, 3.55 ; \mathrm{I}, 32.7$. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{INO}_{3}$ requires $\mathrm{C}, 45.80 ; \mathrm{H}$, $6.10 ; \mathrm{N}, 3.56 ; \mathrm{I}, 32.31 \%$). Distillation of the methiodide salt (400 mg) gave 1-(2,4-dimethylamino-3-methylphenyl)-prop-2-en-1-one (19) in 75% yield as a straw-coloured oil (Found: $\mathrm{C}, 69.96 ; \mathrm{H}, 6.82 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.90$; $\mathrm{H}, 6.79 \%$) ; $\lambda_{\text {max. }} 230$ and 284 nm ; $\nu_{\text {max. }} 1660 \mathrm{~cm}^{-1}$; $\delta 2.14$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-M e$), $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $5.70-6.40\left(2 \mathrm{H}, \mathrm{ABX}\right.$ multiplet, $\left.=\mathrm{CH}_{2}\right), 6.70-7.35(1 \mathrm{H}$. ABX, multiplet $=(\mathrm{CH}-), 6.68(1 \mathrm{H}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$. and 7.52 ($1 \mathrm{H}, J 9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$) ; m/e $206\left(M^{+}\right)$.

Method b. Treatment with piperidine hydrochloride and formaldehyde gave 3 -piperidino-1-(2,4-dimethoxy-3-methyl-phenyl)propan-1-one in 56% yield (Found: C, $70.15 ; \mathrm{H}$, $8.55 ; \mathrm{N}, 4.7 . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{C}, 70.10 ; \mathrm{H}, 8.59 ; \mathrm{N}$, 4.81%); $\lambda_{\max .} 224$ and 273 nm ; $\nu_{\max .} 1675 \mathrm{~cm}^{-1} ; \delta 1.60-$ $2.10\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-M e), 2.80-3.30$ ($6 \mathrm{H} . \mathrm{m}, \mathrm{COCHMe}$ and $\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.56(1 \mathrm{H}, J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, and $7.38(1 \mathrm{H}$, $J 8 \mathrm{~Hz}$, Ar-H); $m / e 291\left(M^{+}\right)$. Steam-distillation of this amine hydrochloride (3.0 g) led to (19), (85%).

1-(2,4-Dimethoxy-3,5-dimethylphenyl)prop-2-en-1-one (20). -2,4-Dimethoxy-3,5-dimethylacetophenone was prepared from 1,3-dimethoxy-2,4-dimethylbenzene (1.66 g$)^{10}$ as a
pale oil ($1.40 \mathrm{~g}, 76 \%$), b.p. $110-120^{\circ} \mathrm{C} / 0.5$ Torr, by treatment with acetyl chloride and $\operatorname{tin}(\mathrm{IV})$ chloride (Found: C , $69.35 ; \mathrm{H}, 7.8$. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.23 ; \mathrm{H}, 7.69 \%$); $\lambda_{\text {max. }} 268 \mathrm{~nm}$; $\nu_{\text {max. }} 2930,2820$, and $1705 \mathrm{~cm}^{-1} ; \delta 2.23$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 2.58(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.70(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and 7.22 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$) ; $m / e 208\left(M^{+}\right), 193,181,169,155$, and 143. Treatment of 2,4-dimethoxy-3,5-dimethylacetophenone (0.5 g) with dimethylamine hydrochloride and paraformaldehyde as described for (22) gave 3 -(NN-dimethyl-amino)-1-(2,4-dimethoxy-3,5-dimethylphenyl)prop-2-en-1-one (78%), b.p. $130-140^{\circ} \mathrm{C} / 0.5 \operatorname{Torr}$ (Found: $M^{\dagger}, 265.1685$. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $M, 265.1677$); $\lambda_{\text {max. }} 227,259$, and $282(\mathrm{sh}) \mathrm{nm}$; $\nu_{\text {max. }} 2880$ and $1680 \mathrm{~cm}^{-1}$; $\delta 2.16(6 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{Me}), 2.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.68-3.16\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}-\right.$ NMe), 3.74 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and 7.31 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$) ; $m / e 265$ $\left(M^{+}\right), 246,220$. The methiodide salt of this amine melts at $170-172{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 46.8 ; \mathrm{H}, 6.3 ; \mathrm{N}, 3.45 . \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{I}-$ NO_{3} requires $\mathrm{C}, 47.17 ; \mathrm{H}, 6.38 ; \mathrm{N}, 3.44 \%$). Distillation in vacuo of the methiodide salt (203 mg) gave 1-(2,4-dimethoxy-3,5-dimethylphenyl)prop-2-en-1-one (20) ($95 \mathrm{mg}, 80 \%$), b.p. $105-110{ }^{\circ} \mathrm{C} / 0.5$ Torr (Found: $M^{+}, 220.1093 . \quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $M^{+}, 220.1099$); $\lambda_{\text {max. }} 225$ and 280 nm ; $\nu_{\text {max. }}$ $1660 \mathrm{~cm}^{-1}$; $\delta 2.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}^{-M}\right.$) , 3.54 and 3.75 (each 3 H , s , OMe), $5.82\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{COC} H \mathrm{CH}_{2}\right), 6.27(1 \mathrm{H}, \mathrm{dd}, J$ $2,18 \mathrm{~Hz}, \mathrm{COCHCH}$ trans to CO), 7.08 ($1 \mathrm{H}, \mathrm{m}, J 9,18 \mathrm{~Hz}$, COCHCH cis to CO), and 7.28 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$) ; $m / e 220,204$, 193, and 180

1-(2-Methoxyphenyl)prop-2-en-1-one (40).-2-Methoxyacetophenone ${ }^{11}(20 \mathrm{~g})$ was treated with dimethylamine hydrochloride and paraformaldehyde in ethanol to give 3-(NN-dimethylamino)-1-(2-methoxyphenyl)propan-1-one (16 g , 65%) as a, viscous oii; $\lambda_{\max } 212,247$, and 304 nm ; $\nu_{\text {max. }}$ $2730,1680 \mathrm{~s}$, and $1610 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta 2.28\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 3.69$ ($2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, 3-\mathrm{CH}_{2}$), $3.17\left(2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right.$), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and $7.30(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; m/e $207\left(M^{+}\right)$. The methiodide salt gave on distillation, 1-(2-methoxy-phenyl)prop-2-en-1-one ($6.0 \mathrm{~g}, 76 \%$) as a colourless oil; $\lambda_{\text {max. }} 216$ and 312 nm ; $y_{\text {max. }} 2850,1675 \mathrm{~s}$, and $1605 \mathrm{~cm}^{-1}$; $\delta 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $5.6-7.7$ (7 H , complex m, Ar-H and olefinic H); $m / e 162\left(M^{+}\right)$.

1-(2,4-Dimethoxyphenyl)-2-methylprop-2-en-1-one (21).-1,3-Dimethoxybenzene (2.8 g) was treated with propionyl chloride and tin(iv) chloride, in a manner similar to that described for (25) and (30), to give 2,4-dimethoxypropiophenone ($3.6 \mathrm{~g}, 80 \%$) as white needles, m.p. $66-67^{\circ} \mathrm{C}$ from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) (lit., ${ }^{9} 67{ }^{\circ} \mathrm{C}$); $\lambda_{\text {max }} 228,267$, and 302 nm ; $\nu_{\text {max }} 2230$ and $1658 \mathrm{~cm}^{-1} ; \delta 1.14(3 \mathrm{H}, \mathrm{t}, J$ $\left.6.5 \mathrm{~Hz}, \mathrm{COCH}_{2} M e\right), 2.95\left(2 \mathrm{H}, \mathrm{q}, J 6.5 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{Me}\right), 3.82$ and 3.86 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.45(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{H}-3), 6.60$ ($1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{H}-5$), and $7.85(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{H}-6) ; m / e$ $194\left(M^{+}\right), 166,155$, and 149.

2,4-Dimethoxypropiophenone (0.96 g) was treated with dimethylamine hydrochloride and paraformaldehyde in ethanol as described for (22) to give 3 -(NN -dimethylamino)-2-methyl-1-(2,4-dimethoxyphenyl)propan-1-one ($1.0 \mathrm{~g}, 80 \%$) as a yellow oil (Found: $M^{+}, 251.1530 . \quad \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $M, 251.1520$); $\lambda_{\max } 215,230$, and 268 nm ; $\nu_{\text {max. }}$ $3500(\mathrm{br}), 2820,2760$, and $1660 \mathrm{~cm}^{-1}$; $\delta 1.18(3 \mathrm{H}, \mathrm{d}, j$ $7 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}$), 2.23 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$), 2.2-2.8 ($2 \mathrm{H}, \mathrm{dq}$, $\mathrm{CH}_{2} \mathrm{NMe}_{2}$), $3.76(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}$), 3.84 and 3.90 (each 3 H , s, OMe), $6.48(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{H}-3), 6.52(1 \mathrm{H}, \mathrm{dd}, J 9,2 \mathrm{~Hz}$, $\mathrm{H}-5)$, and $7.72(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{H}-6)$; $m / e 251,236$, and 220. The methiodide salt melts at $101-105{ }^{\circ} \mathrm{C}$ (Found: C, 45.7 ; $\mathrm{H}, 6.2$; $\mathrm{N}, 3.55$; $\mathrm{I}, 31.95 . \quad \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{INO}_{3}$ requires $\mathrm{C}, 45.81$; $\mathrm{H}, 6.11$; $\mathrm{N}, 3.56$; I, 32.2%). When distilled at $170^{\circ} \mathrm{C} / 0.2$

Torr, the methiodide salt (440 mg) gave 1-(2,4-dimethoxy-phenyl-2-methylprop-2-en-1-one (21) as a pale yellow oil ($220 \mathrm{mg}, 95 \%$) (Found: $M^{+}, 206.0947 . \quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 206.0942$); $\lambda_{\text {max }} 226,277$, and 302 nm ; $\nu_{\text {max. }} 2920$, 2830,1650 , and $1630 \mathrm{~cm}^{-1} ; \delta 2.00(3 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, \mathrm{Me})$, 3.86 and 4.00 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.54 ($1 \mathrm{H}, \mathrm{M}, \mathrm{CH}$ trans to $\mathrm{CO}), 5.75(1 \mathrm{H}, \mathrm{q}, J 1.5 \mathrm{~Hz}, \mathrm{CH}$ trans to Me), $6.44(1 \mathrm{H}, \mathrm{d}$, $J 2 \mathrm{~Hz}, \mathrm{H}-3), 6.48(1 \mathrm{H}, \mathrm{dd}, J 10,2 \mathrm{~Hz}, \mathrm{H}-5)$, and $7.26(1 \mathrm{H}$, d, $J 10 \mathrm{~Hz}, \mathrm{H}-6$) ; $m / e 206\left(M^{+}\right), 189,177,165$, and 151.

1-(2,4-Dimethoxy-3,5-dimethylphenyl)-2-methylprop-2-en-1-one (23).-1,3-Dimethoxy-2,4-dimethylbenzene (3.32 g) was treated with propionyl chloride and $\operatorname{tin}(\mathrm{Iv})$ chloride in AnalaR carbon disulphide giving $2^{\prime}, 4^{\prime}$-dimethoxy $-3^{\prime}, 5^{\prime}$ dimethoxypropiophenone ($3.8 \mathrm{~g}, 87 \%$) as an oil, b.p. $120^{\circ} \mathrm{C} /$ 0.5 Torr (lit., ${ }^{12} 155-158^{\circ} \mathrm{C} / 12 \mathrm{Torr}$); $\lambda_{\text {max. }} 258$ and 300 nm ; $v_{\text {max. }} 1680 \mathrm{~cm}^{-1} ; \delta 1.18\left(3 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{COCH}_{2} M e\right), 2.26$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 2.98\left(2 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{Me}\right), 3.72$ and 3.75 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and 7.20 ($1 \mathrm{H}, \mathrm{s}$, Ar-H) ; $m / e 222$ $\left(M^{+}\right)$.
$2^{\prime}, 4^{\prime}$-Dimethoxy- $3^{\prime}, 5^{\prime}$-dimethylpropiophenone (0.5 g) was treated with dimethylamine hydrochloride and formaldehyde in ethanol to give 3 -(NN -dimethylamino)-2-methyl-1-(2,4-dimethoxy-3,5-dimethylphenyl)propan-1-one as an oil ($20-40 \%$), b.p. $145{ }^{\circ} \mathrm{C} / 0.5$ Torr (Found: $M^{+}, 279.184$. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $M, 279.183$); $\lambda_{\text {max. }} 227,259$, and 282 nm ; $\nu_{\max } 2880$ and $1680 \mathrm{~cm}^{-1}$; $\delta 1.17(3 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}$, $\mathrm{CHMe}), 2.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.3-3.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$, $3.50(1 \mathrm{H}, \mathrm{M}, J 10 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}), 3.50$ and 3.70 (each 3 H , s, OMe), and $7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; m / e 279\left(M^{+}\right)$. Distillation of the corresponding methiodide salt (800 mg) gave 1-(2,4-dimethoxy-3,5-dimethylphenyl)-2-methylprop-2-en-1-one (23) ($355 \mathrm{mg}, 89 \%$) as a pale yellow oil, b.p. $130-140{ }^{\circ} \mathrm{C} / 0.1$ Torr (lit., ${ }^{12} 122-124{ }^{\circ} \mathrm{C} / 0.4$ Torr) (Found: $M^{+}, 234.1275$. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $M, 234.125$ 6); $\lambda_{\text {max. }} 212$ and 273 nm ; $v_{\text {max. }} 1650 \mathrm{~s}$ and $1115 \mathrm{~cm}^{-1} ; \delta 2.05(3 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}$, olefinic Me), 2.28 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}$), 3.64 and 3.72 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.64(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cis to CO), $5.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ trans to CO), and $6.90(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; m / e 234\left(M^{+}\right), 220,193$, and 179.

1-(2,4-Dimethoxy-5-methylphenyl)-2-methylprop-1-en-2-one (24).-1,3-Dimethoxy-4-methylbenzene (0.23 g) was treated with tin(IV) chloride and propionyl chloride in carbon disulphide to give $2^{\prime}, 4^{\prime}$-dimethoxy-5'-methylpropiophenone (270 $\mathrm{mg}, 80 \%$) as white needles from light petroleum (b.p. $40-$ $60^{\circ} \mathrm{C}$), m.p. $72.5-73.5{ }^{\circ} \mathrm{C}$ (Found: C, 69.25; H, 7.95. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.23 ; \mathrm{H}, 7.95 \%$); $\lambda_{\text {max. }} 228,265$, and 311 nm ; $\nu_{\text {max. }} 1720$ and $1650 \mathrm{~cm}^{-1} ; \delta 1.20(3 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}$. $\left.\mathrm{COCH}_{2} M e\right), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-M e), 2.94(2 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}$, $\mathrm{COCH}_{2} \mathrm{Me}$), 3.85 and 3.90 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.44(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-3$) and $7.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$; $m / e 208\left(M^{+}\right), 179,165$, and 150. Treatment with dimethylamine hydrochloride and paraformaldehyde in ethanol gave 3 -($N N$-dimethylamino)2 -methyl-1-(2,4-dimethoxy-5-methylphenyl) propan-1-one (70 mg from 52 mg ketone), b.p. $140^{\circ} \mathrm{C} / 0.5$ Torr (Found: $M^{+}, 265.1668$. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $M, 265.167$ 7); $\lambda_{\text {max }}$. 231,271 , and 313 nm ; $v_{\text {max. }} 1658,1605$, and $3500(\mathrm{br}) \mathrm{cm}^{-1}$; $\delta 1.14(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{Me}), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-M e), 2.1-2.7$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} H_{2} \mathrm{NMe}_{2}$), $2.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right.$), 3.85 and 3.88 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $7.50(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; m / e 265\left(M^{+}\right), 250$, 233,220 , and 180 . The corresponding methiodide salt melts at $190-192{ }^{\circ} \mathrm{C}$ (Found: C, 47.1; H, 6.5; N, 3.35. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{TNO}_{3}$ requires $\mathrm{C}, 47.19 ; \mathrm{H}, 6.39 ; \mathrm{N}, 3.44 \%$). Distillation of the methiodide salt (50 mg) at $150^{\circ} \mathrm{C} / 0.5$ Torr gave 1-(2,4-dimethoxy-5-methylphenyl)-2-methylprop-2-en-1-one (24) (Found: $M^{+}, 220.1095 . \quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires M, 220.1099); $\lambda_{\max } 228,275$, and 312 nm ; $\nu_{\text {max. }} 1645,1655$,
and $1610 \mathrm{~cm}^{-1} ; \delta 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{COCMe}), 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me})$, 3.79 and 3.88 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.55(1 \mathrm{H}, \mathrm{m}), 5.74(2 \mathrm{H}$, $\mathrm{m})$, and $7.71(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; m / e 220,205,180$, and 179.

1-(2-Methoxyphenyl)-2-methylprop-2-en-1-one (42).--2Hydroxypropiophenone ${ }^{13}$ (20 g) was treated with dimethyl sulphate and potassium carbonate, as described in the preparation of (22), to give 2-methoxypropiophenone (15.4 g , 70%) as an oil, b.p. $134-136^{\circ} \mathrm{C} / 22$ Torr (Found: C, 73.3 ; 4, 7.2. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.1 ; \mathrm{H}, 7.4 \%$) ; $\lambda_{\text {max. }} 211$, 245 , and 302 nm ; $\nu_{\text {max. }}$ (film) $1675 \mathrm{~s}, 1600 \mathrm{~s}, 1485$, and $1285 \mathrm{~cm}^{-1} ; \delta 1.16(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}), 3.04(2 \mathrm{H}, \mathrm{q}, J 7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and 6.8-7.7(4 H, m, Ar-H); $m / e 164\left(M^{+}\right)$. 2-Methoxypropiophenone (lllll treated with dimethylamine hydrochloride and paraformaldehyde in methanol to give 3 -(NN-dimethylamino)-1-(2-methoxyphenyl)-2-methylpropan-1-one ($9.9 \mathrm{~g}, 75 \%$); $\lambda_{\text {max }}$ 217,250 , and 305 nm ; $\nu_{\text {max. }}$ (film) $1680 \mathrm{~s}, 1600,1485$, and $1285 \mathrm{~cm}^{-1} ; \delta 1.05(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CH} M e), 2.07(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NMe}_{2}\right), 2.2-2.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 3.55(1 \mathrm{H}, \mathrm{m}, J 7 \mathrm{~Hz}$, $\mathrm{CHMe}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.8-7.5(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; m/e $219\left(M^{+}\right), 176$, and 139. The methiodide salt melts at $129-130{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 86.8 ; \mathrm{H}, 5.8$; N, 3.9; I, 35.0. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{INO}_{2}$ requires $\mathrm{C}, 46.6 ; \mathrm{H}, 5.6$; $\mathrm{N}, 3.9$; $\mathrm{I}, 35.1 \%$). Pyrolysis of the hydrochloride salt (10 g) of this amine at $160{ }^{\circ} \mathrm{C}$ for 3 h gave 1-(2-methoxyphenyl)-2-methylprop-2-en-1-one (42) as an oil ($5.5 \mathrm{~g}, 70 \%$); $\lambda_{\text {max. }} 215$ and 280 nm ; $\nu_{\text {max. }} 1665 \mathrm{~s}, 1600,1250$, and $750 \mathrm{~cm}^{-1} ; \delta 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}), 5.57(1 \mathrm{H}, \mathrm{m}$, olefinic H$), 5.85(1 \mathrm{H}, \mathrm{m}$, olefinic H), and 6.8-7.4 (4 H, m, Ar-H); m/e 176 (M^{+}).

1-(2,4-Dimethoxy-3-methylphenyl)but-2-en-1-one (26).-1,3-Dimethoxy-2-methylbenzene (1.0 g) was treated with crotonyl chloride and $\operatorname{tin}(\mathrm{Iv})$ chloride as described for (25) to give 1-(2,4-dimethyl-3-methylphenyl)but-2-en-1-one (26) as an oil, b.p. $130-140^{\circ} \mathrm{C} / 0.4$ Torr (Found: M^{+}, 220.110. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $M, 220.1099$); $\lambda_{\text {max. }} 210$ and 292 nm ; $\nu_{\text {max. }} 1660 \mathrm{~cm}^{-1} ; \delta 1.96(3 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}, M e \mathrm{CH}), 2.2(3 \mathrm{H}, \mathrm{s}$, $\operatorname{Ar}-M e$), 3.72 and 3.89 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.90(1 \mathrm{H}, \mathrm{s}$, CHCHCHMe), 6.92 ($1 \mathrm{H}, \mathrm{q}, J 5 \mathrm{~Hz}, \mathrm{MeCH}), 6.68(1 \mathrm{H}, \mathrm{d}$, $J 8 \mathrm{~Hz}, \mathrm{H}-5)$, and $7.48(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{H}-6) ; m / e 220,205$, 203 , and 179

1-(2,4-Dimethoxy-3,5-dimethylphenyl)but-2-en-1-one (27). -Treatment of 1,3-Dimethoxy-2,4-dimethylbenzene (0.83 g) with crotonyl chloride and $\operatorname{tin}(\mathrm{IV})$ chloride in AnalaR carbon disulphide gave 1-(2,4-dimethoxy-3,5-dimethylphenyl)-but-2-en-1-one (27) as an oil ($1.0 \mathrm{~g}, 82 \%$), b.p. $110-120^{\circ} \mathrm{C} /$ 0.4 Torr (Found: C, 71.05; H, 7.7\%; m/e 234.1254. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.80 ; \mathrm{H}, 7.69 \%$; m/e 234.125 6); $\lambda_{\text {max. }} 223$ and 269 nm ; $v_{\text {max. }} 1665 \mathrm{~cm}^{-1}$; $\delta 1.95(3 \mathrm{H}, \mathrm{d}, J$ $6 \mathrm{~Hz}, M e \mathrm{CH}$), 2.25 and 2.28 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-M e$), 3.70 and 3.76 (each $3 \mathrm{H}, \mathrm{s}$, OMe), 6.81 ($1 \mathrm{H}, \mathrm{s}, \mathrm{COCHCHMe}$), 6.88 ($1 \mathrm{H}, \mathrm{q}, J 6 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}$), and $7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; m / e 234$, 219, 205, 193, 181, 169, and 155.

1-(2,4-Dimethoxy-3-methylphenyl)-2-methylbut-2-en-1-one (29).-Treatment of 1,3-dimethoxy-3-methylbenzene (1.5 g) with tiglyl chloride and $\operatorname{tin}(\mathrm{IV})$ chloride in AnalaR carbon disulphide, as described in the preparation of (28), gave 1-(2,4-dimethoxy-3-methylphenyl)-2-methylbut-2-en-1-one $(1.8 \mathrm{~g}, 82 \%)$ as an oil, b.p. $130{ }^{\circ} \mathrm{C} / 0.5$ Torr (Found: C, $71.55 ; \mathrm{H}, 7.9 . \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.80 ; \mathrm{H}, 7.63 \%$); $\lambda_{\text {max. }} 231$ and 276 nm ; $\nu_{\text {max. }} 2920,2830,1630,1580$, and $1115 \mathrm{~cm}^{-1}$; $\delta 1.78(3 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, M e \mathrm{CH}), 1.90(3 \mathrm{H}, \mathrm{d}, J$ $1 \mathrm{~Hz}, \mathrm{COCH} M e$), $2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-M e), 3.62$ and 3.79 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.32$ ($1 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}, \mathrm{H}-3$), $6.56(1 \mathrm{H}, \mathrm{d}, J$ $\left.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, and $6.98\left(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right) ; m / e 220\left(M^{+}\right)$, 219, 205, 179, and 165.

1-(2,4-Dimethoxy-3,5-dimethylphenyl)-2-methylbut-2-en-1one (30).--1,3-Dimethoxy-2,4-dimethylbenzene (0.83 g) was reacted with tiglyl chloride and $\operatorname{tin}(\mathrm{IV})$ chloride in AnalaR carbon disulphide to give 5,7-dimethoxy-2,3,4,6-tetra-methylindan-1-one (17) (1.05 g) and 1-(2,4-dimethoxy-3,5-dimethylphenyl)-2-methylbut-2-en-1-one (30) (0.04 g), b.p. $120-125{ }^{\circ} \mathrm{C} / 0.3$ Torr (Found: C, 72.45; H, 8.25. $\mathrm{C}_{15} \mathrm{H}_{20^{-}}$ O_{3} requires $\mathrm{C}, 72.58 ; \mathrm{H}, 8.06 \%$); $\lambda_{\text {max }} 230$ and 270 nm ; $v_{\max } 1660$ and $1635 \mathrm{~cm}^{-1} ; \delta 1.85(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{Me}), 1.90$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} M e), 2.2(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-M e), 3.62$ and $3.70($ each 3 H , $\mathrm{s}, \mathrm{OMe}), 6.2-6.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})$, and $6.8(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$; $m / e 248\left(M^{+}\right)$.

1-(2,4-Dimethoxy-5-methylphenyl)-2-methylbut-2-en-1-one (31).-1,3-Dimethoxy-4-methylbenzene (300 mg$)$ was treated with tiglyl chloride and $\operatorname{tin}(\mathrm{iv})$ chloride in AnalaR carbon disulphide to give 5,7-dimethoxy-2,3,4-trimethyl-indan-1-one (213 mg) and 1-(2,4-dimethoxy-5-methyl-phenyl)-2-methylbut-2-en-1-one (31) (80 mg) (Found: M^{+}, $234.1256 . \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $M, 234.1256$); $\lambda_{\text {max. }} 220$, 277 , and 307 nm ; $\nu_{\text {max }} 1630 \mathrm{~cm}^{-1} ; \delta 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}^{-}-\mathrm{Me}\right)$, 3.80 and 3.92 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.51 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$), and 7.07 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$) ; m/e 234.

5,7-Dimethoxyindan-1-one (10)-3-(3,5-Dimethoxyphenyl)propionic acid (6) (0.9 g) was added with stirring to polyphosphoric acid $(30 \mathrm{ml})$ at $65{ }^{\circ} \mathrm{C}$. The mixture was stirred for 75 min at $65^{\circ} \mathrm{C}$, then poured into ice-water $(100 \mathrm{ml})$ with vigorous stirring. The solution was adjusted to pH 6 with sodium hydroxide solution, then extracted with benzene $(4 \times 100 \mathrm{ml})$. The benzene solution was washed with 10% sodium hydroxide ($2 \times 100 \mathrm{ml}$) and water $(100 \mathrm{ml})$, then evaporated in vacuo leaving pale yellow crystals of 5,7 -dimethoxyindan-1-one, which were recrystallised from benzene-light petroleum (1:1) as colourless needles ($0.8 \mathrm{~g}, 90 \%$), n.p. $98-99{ }^{\circ} \mathrm{C}$ (lit., ${ }^{7} 98.5-99.5$ ${ }^{\circ} \mathrm{C}$) ; $\lambda_{\text {nax. }} 228,273$, and $300(\mathrm{sh}) \mathrm{nm}$; $\nu_{\text {nax. }} 1690 \mathrm{~s}$ and $1600 \mathrm{~s}_{\mathrm{cm}} \mathrm{cm}^{-1} ; \delta 2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.25(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}$, Ar-H), and $6.42(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; m / e 192\left(M^{+}\right)$.
5,7-Dimethoxy-6-methylindan-1-one (11).-Freshly distilled trifluoroacetic acid anhydride (4 mll) was added to a solution of 3-(3,5-dimethoxy-4-methylphenyl)propionic acid (7) $(0.9 \mathrm{~g})$ in trifluoracetic acid $(16 \mathrm{ml})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then evaporated to small volume (ca. 2 ml) and taken up in ether (25 ml). The ether solution was washed with 10% sodium hydroxide ($2 \times 25 \mathrm{ml}$), water $(25 \mathrm{ml})$, then dried and evaporated to give an orange solid which was recrystallised from ethyl acetate-hexane ($1: 1$) as pale yellow prisms of 5,7-dimethoxy-6-methylindan-1-one (11) $(0.7 \mathrm{~g}, 77 \%)$, m.p. $113-115{ }^{\circ} \mathrm{C}$ (Found: C, 69.9; H, 6.8. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.91 ; \mathrm{H}, 6.79 \%$); $\lambda_{\text {max. }} 230$, 278 , and $304(\mathrm{sh}) \mathrm{nm}$; $\nu_{\text {max. }} 1690 \mathrm{~s}$ and $1600 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta 2.10$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.84$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and $6.50(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$); $m / e 208\left(M^{+}\right)$.

5,7-Dimethoxy-2,6-dimethylindan-1-one (13).—Method a. Trifluoroacetic anhydride (3.5 ml) was added to a solution of 3-(3,5-dimethoxy-4-methylphenyl)-2-methylpropionic acid (9) in trifluoracetic acid (15 ml). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then evaporated to small volume, taken up in ether (25 ml) and washed with dilute sodium hydroxide solution $(2 \times 25 \mathrm{ml})$, then water $(25 \mathrm{ml})$. The ethereal solution was dried and evaporated to give a yellow oil which could be recrystallised from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) as white needles of 5,7-dimethoxy-2,6-dimethylindan-1-one ($0.36 \mathrm{~g}, 68 \%$), m.p. $59-60{ }^{\circ} \mathrm{C}$ (Found: C, 70.65 ; H, 7.4 .
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.88 ; \mathrm{H}, 7.32 \%$); $\lambda_{\text {max. }} 227$ and 275 nm ; $v_{\text {max. }} 1690 \mathrm{~cm}^{-1}$; $\delta 1.25(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{Me}), 2.10$ $\left(3 \mathrm{H}, \mathrm{s}, \operatorname{Ar}^{2}-\mathrm{M} e\right), 2.4-2.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.2-3.4(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 3.86$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and $6.60(1 \mathrm{H}$, $\mathrm{s}, \mathrm{Ar}-\mathrm{H})$; $m / e 220\left(M^{+}\right)$.

Method b. 1-(2,4-Dimethoxy-3-methylphenyl)-2-methyl-prop-2-en-1-one (22) (2.0 g) and fluorosulphonic acid (1 ml) were dissolved in dry chloroform (25 ml) and the solution stirred at $20{ }^{\circ} \mathrm{C}$ for 1 week. The solvent was removed in vacuo and the residue partitioned between ether (50 ml) and water (50 ml). The ether solution was washed with 10% sodium hydroxide (25 ml) and water ($2 \times 25 \mathrm{ml}$), dried, and evaporated to give a white solid which was recrystallised from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) to give (13) as white needles ($1.89,95 \%$).

7-Methoxy-2-methylindan-1-one (43).-Concentrated sulphuric acid (2 ml) was mixed with 1-(2-methoxyphenyl)-2-methylprop-2-en-1-one (42) (200 mg) at room temperature and stirred for 15 h . The mixture was added to water $(20 \mathrm{ml})$, extracted with ether ($2 \times 25 \mathrm{ml}$), dried, and evaporated to give 7-methoxy-2-methylindan-1-one (43) (150 $\mathrm{mg}, 75 \%$) ; $\lambda_{\text {max. }} 223,267,285$, and 295 nm ; $\nu_{\text {max. }} 1690 \mathrm{~s}$, $1600 \mathrm{~s}, 1460$, and $1260 \mathrm{~cm}^{-1} ; \delta 1.25(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{Me})$, $2.61\left(2 \mathrm{H}, \mathrm{m}, J 14 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.32(1 \mathrm{H}, \mathrm{m}, J 8 \mathrm{~Hz}, \mathrm{CHMe})$, $3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.80(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, and $7.61(1 \mathrm{H}, \mathrm{c}$, $J 8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; m / e 176\left(M^{+}\right)$.

5,7-Dimethoxy-2,3,4,6-tetramethylindan-1-one (17).-1,3-Dimethoxy-2,4-dimethylbenzene (0.83 g) was dissolved in AnalaR carbon disulphide (30 ml). Tin(iv) chloride (2 ml) and tiglyl chloride $(0.5 \mathrm{ml})$ were added and the solution stirred at reflux for $\mathbf{1 - 2} \mathrm{h}$ until a red-brown solid had separated. After removal of solvent (water-bath). the gummy residue was decomposed with ice-hydrochloric acid and extracted into ether ($3 \times 30 \mathrm{ml}$). The organic layers were dried, then evaporated to give a brown oil (1.3 g) which was further purified by column chromatography on silica gel with dichloromethane as eluant. The relative yields of (31) and (17) were variable, but typically a pale yellow oil (1.03 $\mathrm{g}, 83 \%$) was obtained, which distilled at $125-130{ }^{\circ} \mathrm{C} / 0.5$ Torr to give 5,7-dimethoxy-2,3,4,6-tetramethylindan-1one; ${ }^{14} \lambda_{\text {max. }} 260$ and 302 nm ; $\nu_{\text {max }} 2840,1695 \mathrm{~s}, 1585$, 1325 , and $120 \mathrm{~cm}^{-1}$; $\delta 1.1-1.4(6 \mathrm{H}, \mathrm{m}, J 7,8.5 \mathrm{~Hz}, \mathrm{Me}$, mixture of isomers), $2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 2.30(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{Me}), 2.7-3.0(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{CHMe})$, and $3.0-4.0(1 \mathrm{H}, \mathrm{m}$, COCHMe); m/e $248\left(M^{+}\right)$.

5,7-Dimethoxy-2,3-dimethylindan-1-one (15).-This was obtained in trace amounts from the reaction of $1,3-\mathrm{di}-$ methoxybenzene with tiglyl chloride; alternatively, cyclisation of 1-(2,4-dimethoxyphenyl)-2-methylbut-2-en-1-one (28) with fluorosulphonic acid as described for (13) gave 5,7-dimethoxy-2,3-dimethylindan-1-one ${ }^{15}$ (15), b.p. $130^{\circ} \mathrm{C} / 0.4$ Torr (Found: $M^{+}, 220.1096 . \quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires M, 220.1099) ; $\lambda_{\text {max. }} 225,273$, and $298(\mathrm{sh}) \mathrm{nm}$; $\nu_{\text {max. }} 1685 \mathrm{~cm}^{-1}$; $\delta 1.0-1.4(6 \mathrm{H}, \mathrm{m}, \mathrm{COCHMe}$ and $\mathrm{ArCH} M e), 2.0-3.5(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{CH}$ and $\mathrm{COCH} \mathrm{H}^{-}$), 3.90 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.28 ($1 \mathrm{H}, \mathrm{s}$, Ar-H), and $6.45(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; m / e ~ 220\left(M^{+}\right)$.

5,7-Dimethoxy-2,3,6-trimethylindan-1-one (16).--Cyclisation of 1-(2,4-dimethoxy-3-methylphenyl)-2-methylbut-2-en-1-one (29) with fluorosulphonic acid gave 5,7-dimethoxy-2,3,6-trimethylindan-1-one (16) as an oil, b.p. $135^{\circ} \mathrm{C} / 0.5$ Torr (Found: C, 71.75; H, 7.75. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C., $71.80 ; \mathrm{H}, 7.69 \%) ; \lambda_{\max } 273 \mathrm{~nm} ; \nu_{\max .} 1690 \mathrm{~cm}^{-1} ; \delta 1.35$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{ArCHMe}$ and COCHMe), $2.0-3.5(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}-$ and COCHMe), $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}$), 3.90 and 3.92 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and 6.61 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}$) ; $m / e 234\left(M^{+}\right)$.

5,7-Dimethoxy-2,4,6-trimethylindan-1-one (14).-Cyclisation of 1-(2,4-dimethoxy-3,5-dimethylphenyl)-2-methyl-prop-2-en-1-one (23) with fluorosulphonic acid gave 5,7-dimethoxy-2,4,6-trimethylindan-1-one (14), b.p. 110-115 ${ }^{\circ} \mathrm{C} / 0.1$ Torr (lit., ${ }^{12} 145-148{ }^{\circ} \mathrm{C} / 3$ Torr) ; $\lambda_{\text {max }} 277 \mathrm{~nm}$; $v_{\text {max }}$ 2840,1685 , and $1140 \mathrm{~cm}^{-1}$; $\delta 1.30(3 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, $\mathrm{COCHMe}), 2.20(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 2.5-3.5\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}^{-} \mathrm{CH}_{2}\right.$, COCH_{2}, and COCHMe), and 3.75 and 3.92 (each 3 H , s, OMe) ; $m / e 234\left(M^{+}\right), 220,205$, and 191.

6,8-Dimethoxy-3,7-dimethylisocoumarin (33).-A solution of 5,7 -dimethoxy-2,6-dimethylindan-1-one (13) (0.58 g) in freshly distilled trifluoracetic anhydride (20 ml) was stirred at $20^{\circ} \mathrm{C}$ for 40 min . The solvent was removed in vacuo and the brown residue distilled at $130{ }^{\circ} \mathrm{C} / 0.1$ Torr to give 5,7-dimethoxy-2,6-dimethyl-1-trifuoracetoxyindene as a pale yellow oil which crystallised on standing ($0.66 \mathrm{~g}, 79 \%$), m.p. $70-72{ }^{\circ} \mathrm{C}$ (Found: C, 57.55; H, 5.05. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4}$ requires C, $56.96 ; \mathrm{H}, 4.78 \%$) ; $\lambda_{\text {max }} 247,269,277,289$, and 324 nm ; $v_{\max } 1720 \mathrm{~s}$ and $1600 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.20(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 3.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.86(3 \mathrm{H}, \mathrm{s}$, OMe), and $6.80(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$; $m / e 316\left(M^{+}\right)$. This unstable enol trifluoracetate (0.66 g) was dissolved in dry ethyl acetate (100 ml) and cooled to $-78{ }^{\circ} \mathrm{C}$. Ozone was passed through the solution until it became pale blue, then the solution was flushed with N_{2}. Dimethyl sulphide (10 ml) was added and the solution stirred at $20^{\circ} \mathrm{C}$ overnight, when the solvent was removed in vacuo and the residue dissolved in ether (50 ml). The ethereal solution was washed with water ($2 \times 30 \mathrm{ml}$), then dried and evaporated. Colourless crystals of 6,8-dimethoxy-3,7-dimethylisocoumavin (33) were obtained from methanol ($0.65 \mathrm{~g}, 75 \%$), m.p. $153-156{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 66.35 ; \mathrm{H}, 6.05 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.37 ; \mathrm{H}$, $6.02 \%)$; $\lambda_{\text {max. }} 248,270,288$, and 324 nm ; $\nu_{\text {max. }} 1720$ and $1600 \mathrm{~cm}^{-1}$; $\delta 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.85(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.15(\mathrm{IH}, \mathrm{s}, \mathrm{CH})$, and $6.45(\mathrm{IH}$, $\mathrm{s}, \mathrm{Ar}-\mathrm{H})$; $m / e 234\left(M^{+}\right)$

6,8-Dihydroxy-3,7-dimethylisocoumarin (36).-6,8-Di-methoxy-3,7-dimethylisocoumarin (33) (0.2 g) was dissolved in dry dichloromethane (25 ml) at $-78{ }^{\circ} \mathrm{C}$. Boron tribromide (1 ml) was added slowly with stirring and the solution allowed to warm up to $20^{\circ} \mathrm{C}$ overnight. Most of the solvent was removed in vacuo and ether added cautiously. The white precipitate which formed was removed by filtration and washed with ether (5 ml), then water (5 ml). Sublimation at $160{ }^{\circ} \mathrm{C} / 0.5$ Torr gave 6,8-dihydroxy-3,7dimethylisocoumarin (36) as a white powder ($0.167 \mathrm{~g}, \mathbf{9 0} \%$), m.p. $230{ }^{\circ} \mathrm{C}$ (sublimes) (Found: C, 64.15; H, 4.85. $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{-}$ O_{4} requires $\mathrm{C}, 64.07$; $\mathrm{H}, 4.85 \%$); $\lambda_{\text {max. }} 245,279$, and 327 $\mathrm{nm} ; v_{\text {max. }} 1670 \mathrm{~cm}^{-1} ; \delta 2.05(3 \mathrm{H} \mathrm{s}, \mathrm{Me}), 2.21(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{Me}), 6.23(1 \mathrm{H}, \mathrm{s})$, and $6.27(1 \mathrm{H}, \mathrm{s}) ; m i e 206\left(M^{+}\right)$.

6,8-1) imethoxy-3,4,5,7-tetramethylisocoumarin (34).Freshly distilled 2,3,4,6-tetramethyl-5,7-dimethoxyindan-1one (17) (84 mg) was dissolved in freshly prepared trifluoroacetic anhydride; the solution was stirred for $3-4 \mathrm{~h}$, during which time a pink colour developed. The solution was then evaporated to give 5,7-dimethoxy-2,3,4,6-tetramethyl-1-trifluoroacetoxyindene as a dark oil (90 mg) which was not further purified; $\lambda_{\text {max. }}$ (hexane) 234, 241(sh), 252, 259, 266, and 269 nm ; $v_{\text {max }} 1765,1160,1125,1095$, and $900 \mathrm{~cm}^{-1}$; $\delta 1.35(3 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{ArCHMe}), 1.9(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=), 3.22$ and 3.32 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}$), $3.0-3.5$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArCHMe}$), and 3.70 and 3.75 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$); $m / e 344\left(M^{+}\right)$and 248. The crude enol trifluoracetate (90 mg) was dissolved in dry ethyl acetate (50 ml) and ozonised at $-78^{\circ} \mathrm{C}$. After removal of excess of ozone, dimethyl sulphide (0.5 ml) was
added and the solution allowed to warm to room temperature overnight. Evaporation of the solvent, finally at high vacuum, gave a brown oil (110 mg) which was shown to be 6,8 -dimethoxy-3-hydroxy-3,4,5,7-tetramethyl-3,4-dihydroisocoumarin ${ }^{14}(38)$ by its n.m.r. data. It distilled as the isocoumarin (34) and could not be purified by t.l.c.; $\lambda_{\text {max }} 255$ and 301 nm ; $v_{\text {max }} 1715 \mathrm{~cm}^{-1} ; \delta 1.25(3 \mathrm{H}, \mathrm{d}, J$ $7 \mathrm{~Hz}, \operatorname{ArCH} M e), 1.65[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{OH}) M e], 2.21(6 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{Me}$), 3.72 and 3.78 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and $4.4(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; m / e 280\left(w^{\prime}\right), 262\left(M^{+}-18\right)$, and 248. The crude lactol (38), when distilled at $130-140^{\circ} \mathrm{C} / 0.3$ Torr with tol-uene- p-sulphonic acid, gave a pale yellow oil which solidified on standing. Recrystallisation from acetone-light pettroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) gave 6,8 -dimethoxy-3,4,5,7-tetramethylisocoumarin as white needles, m.p. $144-145{ }^{\circ} \mathrm{C}$ (lit., ${ }^{16}$ $144.5-145^{\circ} \mathrm{C}$) ; $\lambda_{\text {max. }} 245,260,278,287$, and 343 nm ; $\nu_{\text {max. }}$ 1720 and $1645 \mathrm{~cm}^{-1} ; \delta 3.30(9 \mathrm{H}, \mathrm{Me}), 3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and 3.88 and 3.92 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$); $m / e 262\left(M^{+}\right), 260$, 248, 234, and 218.

6,8-Dihydroxy-3,4,5,7-tetramethylisocoumarin (37).-6,8-Dimethoxy-3,4,5,7-tetramethylisocoumarin (34) (10 mg) was dissolved in dry dichloromethane (10 ml) and cooled to $-78^{\circ} \mathrm{C}$. Boron tribromide $(0.2 \mathrm{ml})$ was added with stirring and the reaction allowed to warm to room temperature overnight. Ether (10 ml) was added cautiously, followed by water ($3 \times 10 \mathrm{ml}$). The combined aqueous layers were extracted into ether ($3 \times 10 \mathrm{ml}$) and the combined organic layers then dried and evaporated to give 6,8-dihydroxy-$3,4,5,7$-tetramethylisocoumarin (37) as a white powder (8 mg) which was recrystallised from methanol as a white powder, m.p. 223-224 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{16} 224{ }^{\circ} \mathrm{C}$); $\lambda_{\text {max. }} 247,267,285,293$, and 345 nm ; $\nu_{\text {max }} 3200(\mathrm{br}), 1728,1662$, and $1618 \mathrm{~cm}^{-1}$; $\delta 1.29(2 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}^{-} \mathrm{C} M e\right), 2.29$ and 2.32
(each $3 \mathrm{H}, \mathrm{s}, \operatorname{Ar}-M e$), and 2.44 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH} M e$) ; $m / c 234$ $\left(M^{+}\right)$.

We thank the S.R.C. for financial support.
[0/714 Received, 15th May, 1980]

REFERENCES

${ }^{1}$ W. B. Turner, 'Fungal Metabolites,' ch. 5, Academic Press, London, 1971.
${ }_{2}$ M. J. Garson and J. Staunton, J.C.S. Chem. Comm., 1978, 158.
${ }^{3}$ A. J. Birch, F. Gager, L. Mo, A. Pelter, and J. J. Wright, Austral. J. Chem., 1969, 22, 2429.
${ }^{4}$ A. G. McInnes, D. G. Smith, L. C. Vining, and L. Johnson, Chem. Comm., 1971, 325.
${ }_{5}{ }^{\text {R R. H. Rayner, R. M. Colyer, R. A. Hill, and J. Staunton, }}$ J.C.S. Perkin I, 1976, 1438.
${ }^{6}$ J. H. Burkhalter and H. C. Fuson, J. Amer. Chem. Soc., 1948, 70, 4184.
${ }^{7}$ ' R. Huisgen, G. Seidl, and I. Wimmer, Annalen, 1964, 677, 21.
${ }^{8}$ A. A. Bell, J. N. Chatterjea, J. S. E. Holker, J. Staunton, and W. B. Whalley, J. Chem. Soc., 1964, 4307.
-'Dictionary of Organic Compounds,' Eyre and Spottiswoode, London, 1965.
${ }^{10}$ W. Baker, H. F. Bondy, J. F. W. McOmie, and H. R. Tunnicliffe, J. Chem. Soc., 1949, 2834.
${ }_{11}$ ' Handbook of Chemistry and Physics,' Chemical Rubber Company, Cleveland, Ohio, 1972.
${ }_{12}$ T. Sassa, H. Aoki, and K. Munakata, Tetrahedron Letters, 1968, 5703.
${ }^{13}$ E. Miller and W. Hortung, Org. Synth, Coll Vol. II, 543.
14 A. K. Tanaka, A. Kobayashi, and K. Yamashita, Agric. Biol. Chem., 1973, 669.
${ }_{15}$ A. K. Tanaka, C. Sato, U. Shibita, A. Kobayashi, and K. Yamashita, Agric. Biol. Chem., 1974, 1311.
${ }^{16}$ T. Sassa, M. Aoki, M. Naniki, and K. Munakata, Agric. Biol. Chem., 1968, 1432.

